
Self Chain
Blockchain Security Audit

No. 202404191527

Apr 19th, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

Self Chain Security Audit

Page 2 of 27

Contents

1 Overview ........................................................................................................................................................... 5

1.1 Project Overview .................................................................................................................................... 5

1.2 Audit Overview ....................................................................................................................................... 5

2 Findings ............................................................................................................................................................ 6

[Self Chain-01] Periodic vesting accounts lack validation ......................................................................7

[Self Chain-02] Excessive broadcast failures can result in user funds being locked ..........................8

[Self Chain-03] Migration request status processing is incomplet ....................................................... 9

[Self Chain-04] Improper concurrency operationsmay result in data loss ........................................10

[Self Chain-05] DeadWallet contract missing check for migration amount .......................................11

[Self Chain-06] Potential slashing evasion during re-delegation ........................................................ 13

[Self Chain-07] The lockedAmountmissing numeric check ................................................................ 14

[Self Chain-08] Transaction failed due to wrong token type ............................................................... 16

[Self Chain-09] Missing BlockedAddressed validation in vestingmodule .......................................... 17

[Self Chain-10] The target address in the DeadWallet contract is not verified .................................. 19

[Self Chain-11] Redundant code ...............................................................................................................20

[Self Chain-12] Query function is missing parameter restrictions .......................................................21

3 Appendix ........................................................................................................................................................ 22

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................22

3.2 Disclaimer ............................................................................................................................................25

3.3 About Beosin ....................................................................................................................................... 26



```

Self Chain Security Audit

Page 3 of 27

Summary of Audit Result

After auditing, 5 Medium-risks ,4 Low-risks and 3 Info items were identified in the Self Chain. Specific

audit details will be presented in the Findings section. Users should pay attention to the following

aspects when interacting with this project:

Medium
Fixed : 4 Acknowledged: 1

Low
Fixed : 4 Acknowledged: 0

Info 00000000000000000000Fixed : 2 Acknowledged: 1


```

Self Chain Security Audit

Page 4 of 27

Business overview

The Self Chain is a Layer1 blockchain built on Cosmos. In addition to the basic modules of Cosmos, Self

Chain also adds two modules: migration and selfvesting to provide users with the function of migrating

Ethereum assets to Self Chain. In addition, in order to automate the migration process, a migration

contract DeadWallet and amigration service are also built: selfchain -migrator.

The DeadWallet contract is a smart contract on the Ethereum. It provides an entrance for migrating

tokens to self-chains.Users can lock FRONT and HOTCROSS tokens into this contract, and the contract

will automatically trigger relevant events, which will be received by selfchain-migrator. After

selfchain-migrator monitors the migration request from the DeadWallet contract, it will perform a

simple detection, and then call the interface of the migration module in Self Chain to create a vesting

record. After the vesting duration is over, users can call the release function of the self-unlocking

module to release this part of the assets.

In addition to the above-mentioned automated migration, Self Chain also provides the function for

project manager to manually add migration records to avoid missing migration records due to network

problems.



```

Self Chain Security Audit

Page 5 of 27

1 Overview

1.1 Project Overview

Project Name Self Chain

Project Language Solidity, Go, Rust

Platform Self Chain

Code Base

https://github.com/hotcrosscom/selfchain

https://github.com/hotcrosscom/selfchain-migrator

https://github.com/hotcrosscom/token-migration

Commit ID

selfchain:

bb87ac2289f71759a642a9c9c7ce00a84c7accfd

02ba28d8c08a784891982c49aeec23ec10407a36

14640648e19727626e62b21a8563bcbb839907b1

1c7c71f5949f94132c03c6abb7dcc9bbdf1da938

a489c4198f14afd26666588ca714e645bf19694a

selfchain-migrator:

e0d2d421fc6fdc92ace874d1befe05402df426f8

fa02c0fa22004078cd101d7126971c365e7e302b

6858e50ec61cd774f311e85e74920da53b6cfe12

b9c0943e48e4e3731983c6e0d4e21ded18a932cf

token-migration:

99c22b52afbb898e41bcca4d47679b83027a605e

7ae833df9779af2787bbb302c8050c7390cac2c6

1.2 Audit Overview

Audit work duration: Mar 12, 2024 – Apr 19, 2024

Audit team: Beosin Security Team

https://github.com/hotcrosscom/selfchain-migrator


```

Self Chain Security Audit

Page 6 of 27

2 Findings

Index Risk description Severity level Status

Self Chain-01 Periodic vesting accounts lack validation Medium Fixed

Self Chain-02 Excessive broadcast failures can result in user
funds being locked

Medium Acknowledged

Self Chain-03 Migration request status processing is
incomplete

Medium Fixed

Self Chain-04 Improper concurrency operations may result in
data loss

Medium Fixed

Self Chain-05 DeadWallet contract missing check for migration
amount

Medium Fixed

Self Chain-06 Potential slashing evasion during re-delegation Low Fixed

Self Chain-07 The lockedAmountmissing numeric check Low Fixed

Self Chain-08 Transaction failed due to wrong token type Low Fixed

Self Chain-09 Missing BlockedAddressed validation in vesting
module

Low Fixed

Self Chain-10 The target address in the DeadWallet contract is
not verified

Info Acknowledged

Self Chain-11 Redundant code Info Fixed

Self Chain-12 Query function is missing parameter restrictions Info Fixed



```

Self Chain Security Audit

Page 7 of 27

[Self Chain-01] Periodic vesting accounts lack validation

Severity Level Medium

Lines https://github.com/cosmos/cosmos-sdk/tree/v0.46.7/x/auth/vesting/types/m
sgs.go #L163-191

Description The Self Chain utilizes Cosmos-SDK v0.46.7, which contains a security

vulnerability. Specifically, in this version, the PeriodicVestingAccount lacks

proper validation for the corresponding vesting period. If the amount within the

vesting is invalid, it allows deposits but does not permit withdrawals.

Consequently, when a user deposits funds into their account, those funds

become permanently locked, and the user is unable to withdraw them.

if msg.StartTime < 1 {
return fmt.Errorf("invalid start time of %d, length must be

greater than 0", msg.StartTime)
}
for i, period := range msg.VestingPeriods {

if period.Length < 1 {
return fmt.Errorf("invalid period length of %d in

period %d, length must be greater than 0", period.Length, i)
}

}

Recommendation

It is recommended to add additional period validation logic or upgrade the SDK

version to v0.46.13 or higher.

Reference:

https://github.com/cosmos/cosmos-sdk/commit/fd90480b0a922611e3665527

51a9037e309d8410

Status Fixed. The issue has been fixed in commit

02ba28d8c08a784891982c49aeec23ec10407a36 of the project. The current

version of Cosmos-SDK being used is 0.47.10.

https://github.com/cosmos/cosmos-sdk/commit/fd90480b0a922611e366552751a9037e309d8410
https://github.com/cosmos/cosmos-sdk/commit/fd90480b0a922611e366552751a9037e309d8410


```

Self Chain Security Audit

Page 8 of 27

[Self Chain-02] Excessive broadcast failures can result in user funds
being locked

Severity Level Medium

Lines selfchain-migrator/src/consumers/migration_request.rs

Description In selfchain-migrator/src/consumers/migration_request.rs, the

MigrationRequestConsumer handler lacks error handling mechanisms,

potentially resulting in failed migration operations for users. For instance, if

network or other issues prevent the successful broadcast of a mint transaction

on the Self Chain, the handler retries the operation. However, after 50 retry

attempts, regardless of the success or failure of the Self Chain's migration

transaction, the program proceeds to consume messages from the RabbitMQ

message queue and marks the corresponding user transaction as processed.

This situation can lead to funds being locked andmigration failures for users.

if retry_count > 50 {

println!("Failed to send migrate tokens for tx hash {:?}",

&msg.tx_hash);

return Ok(())

}

Recommendation

It is recommended to, after reaching the maximum retries, store the

information of the failed transaction in a database for manual intervention to

perform a manual migration at a later stage instead of directly deleting

migration records.

Status Acknowledged. The project team stated that the migration records have been

recorded through logs and no longer need to be stored separately.



```

Self Chain Security Audit

Page 9 of 27

[Self Chain-03] Migration request status processing is incomplet

Severity Level Medium

Lines selfchain-migrator/src/blockchain/api.rs #L52-60

Description In the api.rs of selfchain-migrator/src/blockchain, if a non-404 error occurs due

to network or server problems, true will also be returned here, causing the

migration request message of the message queue to be consumed, and the

migration program mistakenly believes that it has been migrated. Even if the

service is restored, the migration program will not reprocess the request,

resulting in the user notminting the corresponding assets on Self Chain.

pub async fn migration_exists(api_url: &str, req: &MigrationRequest)

-> Result<bool> {

let resp = fetch_token_migration(api_url, req).await?;

if resp.status().as_u16() == 404 {

Ok(false)

} else {

Ok(true)

}

}

Recommendation

It is recommended to modify the matching conditions as follows: If it is a 404

error, it means "Not Migrated". If it is a 200 status code, it means "Migrated".

Otherwise, if it is any other status code, return an error and resend the request.

Status Fixed. This issue has been fixed according to the modification

recommendations.

pub async fn migration_exists(api_url: &str, req: &MigrationRequest)

-> Result<bool> {

let resp = fetch_token_migration(api_url, req).await?;

let status = resp.status().as_u16();

if status == 200 {

Ok(true)

} else if status == 404 {

Ok(false)

} else {

Err(eyre!("Network error: {}", status))

}

}


```

Self Chain Security Audit

Page 10 of 27

[Self Chain-04] Improper concurrency operations may result in data
loss

Severity Level Medium

Lines selfchain-migrator/src/services/migration_listener.rs

Description In selfchain-migrator/src/services/migration_listener.rs, the program first call

update_block(&store, Arc::clone(&shared_lock)) to asynchronously attempt

updating Redis data every 300 seconds, then proceeds to call

read_block(&store.redis_pool).await to read the Redis data. If there's a

temporary failure in reading due to a Redis service issue, it awaits until the

asynchronous sleep of 300 seconds completes. If during this wait period the

Redis data is updated first, and then read, it results in fetching the latest block,

potentially causing the loss of previously unprocessed blocks.

let shared_lock = Arc::new(Mutex::new(()));

update_block(&store, Arc::clone(&shared_lock));

let start_block = if let Ok(start_block) =

read_block(&store.redis_pool).await {

start_block

} else {

store.config.start_block

};

Recommendation

It is recommended to read the data before performing write operations in

asynchronous operations to avoid reading stale or incorrect data. In this case,

consider placing the update_block() operation after the read_block() operation.

Status Fixed. This issue has been fixed according to the modification

recommendations.

let start_block = if let Ok(start_block) =

read_block(&store.redis_pool).await {

start_block

} else {

store.config.start_block

};

let shared_lock = Arc::new(Mutex::new(()));

update_block(&store, Arc::clone(&shared_lock));



```

Self Chain Security Audit

Page 11 of 27

[Self Chain-05] DeadWallet contract missing check for migration
amount

Severity Level Medium

Lines token-migration/contracts/DeadWallet.sol

Description The DeadWallet contract serves as an Ethereum contract for receiving

cross-chain assets. Users utilize the migrateFront and migrateHotcross

functions in the contract to lock their assets. However, these two functions do

not verify the amount of tokens being migrated. Meanwhile, Self Chain

mandates that the amount of tokens being locked must exceed

config.MinMigrationAmount during migration operations. Consequently, if a

user's migrated token amount is less than this value, the migration will fail,

leaving the user unable to withdraw their locked assets, resulting in asset loss.

amount := sdkmath.NewUintFromString(msg.Amount)

if amount.LT(sdkmath.NewUint(config.MinMigrationAmount)) {

return nil, types.ErrInvalidMigrationAmount

}

Recommendation

It is recommended to check the user balance in the migrateFront and

migrateHotcross functions, requiring the user balance to be no less than 1

token.

Status Fixed.

uint256 constant MinMigrationAmount = 1e18;

function setMigrationWindowOpen(uint256 token, bool isOpen) public

onlyOwner {

if(token == FRONT_TOKEN) {

isFrontOpen = isOpen;

} else if (token == HOTCROSS_TOKEN) {

isHotcrossOpen = isOpen;

}

}

function migrateFront(string memory destAddress)

whenOpen(FRONT_TOKEN) public {

uint256 amount = front.balanceOf(msg.sender);

require(amount >= MinMigrationAmount, "Insufficient FRONT


```

Self Chain Security Audit

Page 12 of 27

balance");

front.safeTransferFrom(msg.sender, address(this), amount);

emit NewMigration(msg.sender, FRONT_TOKEN, destAddress, amount);

}



```

Self Chain Security Audit

Page 13 of 27

[Self Chain-06] Potential slashing evasion during re-delegation

Severity Level Low

Lines https://github.com/cosmos/cosmos-sdk/tree/v0.46.7/x/staking/keeper/slash.
go

Description If a delegation contributed to byzantine behavior of a validator, and the validator

has not yet been slashed, it may be possible for that delegation to evade a

pending slashing penalty through re-delegation behavior.

Recommendation
It is recommended to add additional validation logic or upgrade the SDK version

to v0.47.10 or higher.

Status Fixed. The issue has been fixed in commit

02ba28d8c08a784891982c49aeec23ec10407a36 of the project. The current

version of Cosmos-SDK being used is 0.47.10.


```

Self Chain Security Audit

Page 14 of 27

[Self Chain-07] The lockedAmount missing numeric check

Severity Level Low

Lines selfchain/x/migration/keeper/msg_server_migrate.go #L93-98

Description In msg_server_migrate.go within selfchain/x/migration/keeper, the

AddBeneficiary function performs a subtraction operation where

InstantlyReleasedAmount is subtracted from lockedAmount. However, it lacks

pre-checking to compare the values of lockedAmount and

InstantlyReleasedAmount. Therefore, if lockedAmount is less

thanInstantlyReleasedAmoun, an error occurs in the subtraction operation,

causing this migration to fail.

k.selfvestingKeeper.AddBeneficiary(ctx,

selfvestingTypes.AddBeneficiaryRequest{

Beneficiary: msg.DestAddress,

Cliff: config.VestingCliff,

Duration: config.VestingDuration,

Amount: lockedAmount.Sub(types.GetInstantlyRelea

sedAmount()).String(),

})

Recommendation
It is recommended to add a check that lockedAmount is greater than

InstantlyReleasedAmount, and then perform the subtraction operation.

Status Fixed.

if migrationAmount.LTE(instantlyReleased) {

instantlyReleasedCoins := sdk.NewCoins(sdk.NewCoin(

types.DENOM,

sdkmath.NewIntFromBigInt(migrationAmount.BigInt()),

))

k.bankKeeper.SendCoinsFromModuleToAccount(ctx,

selfvestingTypes.ModuleName, destAddr, instantlyReleasedCoins)

} else {

instantlyReleasedCoins := sdk.NewCoins(sdk.NewCoin(

types.DENOM,

sdkmath.NewIntFromBigInt(instantlyReleased.BigInt())

))

k.bankKeeper.SendCoinsFromModuleToAccount(ctx,



```

Self Chain Security Audit

Page 15 of 27

selfvestingTypes.ModuleName, destAddr, instantlyReleasedCoins)

k.selfvestingKeeper.AddBeneficiary(ctx,

selfvestingTypes.AddBeneficiaryRequest{

Beneficiary: msg.DestAddress,

Cliff: config.VestingCliff,

Duration: config.VestingDuration,

Amount: migrationAmount.Sub(instantlyReleased).Stri

ng(),

})

}


```

Self Chain Security Audit

Page 16 of 27

[Self Chain-08] Transaction failed due to wrong token type

Severity Level Low

Lines selfchain-migrator/src/blockchain/tx.rs #L38

Description In tx.rs of selfchain-migrator/src/blockchain, when compute auth info by

associating a fee, the token type used in auth.info is incorrectly written as

uself, causing the gas balance to be judged to be insufficient when initiating a

transaction.

let auth_info =

signer_info.auth_info(Fee::from_amount_and_gas(Coin::new(5000,

"uself")?, gas));

Recommendation It is recommended to Change uself to uslf.

Status Fixed.



```

Self Chain Security Audit

Page 17 of 27

[Self Chain-09] Missing BlockedAddressed validation in vesting
module

Severity Level Low

Lines https://github.com/cosmos/cosmos-sdk/tree/v0.46.7/x/auth/vesting/msg_ser
ver.go #L29-87

Description There is a vulnerability in the "x/auth/vesting" module in the version of

Cosmos-SDK used in this project that allows users to create regularly

attributed accounts on blocked addresses, such as uninitialized module

accounts.

If this is triggered, it may cause the chain to stop if GetModuleAccount in the

module's Begin/EndBlock calls the relevant uninitialized account. This

combination of uninitialized blockedmodule accounts is uncommon.

from, err := sdk.AccAddressFromBech32(msg.FromAddress)

if err != nil {

return nil, err

}

to, err := sdk.AccAddressFromBech32(msg.ToAddress)

if err != nil {

return nil, err

}

if bk.BlockedAddr(to) {

return nil, sdkerrors.Wrapf(sdkerrors.ErrUnauthorized, "%s is

not allowed to receive funds", msg.ToAddress)

}

if acc := ak.GetAccount(ctx, to); acc != nil {

return nil, sdkerrors.Wrapf(sdkerrors.ErrInvalidRequest,

"account %s already exists", msg.ToAddress)

}

baseAccount := authtypes.NewBaseAccountWithAddress(to)

baseAccount = ak.NewAccount(ctx,

baseAccount).(*authtypes.BaseAccount)

baseVestingAccount := types.NewBaseVestingAccount(baseAccount,

msg.Amount.Sort(), msg.EndTime)

Recommendation

It is recommended to add additional validation was added to prevent creation of

a periodic vesting account in this scenario or upgrade the SDK version to

v0.47.9 or higher.


```

Self Chain Security Audit

Page 18 of 27

Status Fixed. The issue has been fixed in commit

02ba28d8c08a784891982c49aeec23ec10407a36 of the project. The current

version of Cosmos-SDK being used is 0.47.10.



```

Self Chain Security Audit

Page 19 of 27

[Self Chain-10] The target address in the DeadWallet contract is not
verified

Severity Level Info

Lines token-migration/contracts/DeadWallet.sol

Description The destAddress in the DeadWallet contract is not validated for basic

correctness and formatting during migration. If a user mistakenly enters an

address with an incorrect format, it can result in the user's funds being locked in

the contract without the ability tomint them on Self Chain.

function migrateFront(string memory destAddress)

whenOpen(FRONT_TOKEN) public {

uint256 amount = front.balanceOf(msg.sender);

require(amount >= MinMigrationAmount, "Insufficient FRONT

balance");

front.safeTransferFrom(msg.sender, address(this), amount);

emit NewMigration(msg.sender, FRONT_TOKEN, destAddress, amount);

}

function migrateHotcross(string memory destAddress)

whenOpen(HOTCROSS_TOKEN) public {

uint256 amount = hotcross.balanceOf(msg.sender);

require(amount >= MinMigrationAmount, "Insufficient HOTCROSS

balance");

hotcross.safeTransferFrom(msg.sender, address(this), amount);

emit NewMigration(msg.sender, HOTCROSS_TOKEN, destAddress,

amount);

}

Recommendation
It is recommended to perform basic verification of the target address in the

contract or user front-end.

Status Acknowledged. The project team stated that it will perform verification on the

front end and only allow wallet interaction.


```

Self Chain Security Audit

Page 20 of 27

[Self Chain-11] Redundant code

Severity Level Info

Lines selfchain/x/selfvesting/keeper/vesting_positions.go #L38-47

Description In selfchain/x/selfvesting/keeper/vesting_positions.go, the purpose of the

RemoveVestingPositions function is to delete vesting positions. However, in

reality, this function is not used anywhere in the entire project and cannot be

called externally. It is considered redundant code.

// RemoveVestingPositions removes a vestingPositions from the store

func (k Keeper) RemoveVestingPositions(

ctx sdk.Context,

beneficiary string,

) {

store := prefix.NewStore(ctx.KVStore(k.storeKey),

types.KeyPrefix(types.VestingPositionsKeyPrefix))

store.Delete(types.VestingPositionsKey(

beneficiary,

))

}

Recommendation It is recommended to remove redundant code.

Status Fixed.



```

Self Chain Security Audit

Page 21 of 27

[Self Chain-12] Query function is missing parameter restrictions

Severity Level Info

Lines selfchain/x/migration/client/cli/query_migrator.go #L13-44

Description In selfchain/x/migration/client/cli/query_migrator.go, the implementation of

the CmdListMigrator function lacks proper parameter configuration and

validation, allowing arbitrary parameters to be added after the command.

func CmdListMigrator() *cobra.Command {

cmd := &cobra.Command{

Use: "list-migrator",

Short: "list all migrator",

RunE: func(cmd *cobra.Command, args []string) error {

clientCtx := client.GetClientContextFromCmd(cmd)

pageReq, err := client.ReadPageRequest(cmd.Flags())

if err != nil {

return err

}

queryClient := types.NewQueryClient(clientCtx)

params := &types.QueryAllMigratorRequest{

Pagination: pageReq,

}

res, err := queryClient.MigratorAll(context.Background(),

params)

if err != nil {

return err

}

return clientCtx.PrintProto(res)

},

}

flags.AddPaginationFlagsToCmd(cmd, cmd.Use)

flags.AddQueryFlagsToCmd(cmd)

return cmd

}

Recommendation
It is recommended to add Args: cobra.NoArgs to enforce parameter

restrictions.

Status Fixed.


```

Self Chain Security Audit

Page 22 of 27

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

Self Chain Security Audit

Page 23 of 27

4.1.2 Degree of impact

 Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

4.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

Self Chain Security Audit

Page 24 of 27

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

4.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

Self Chain Security Audit

Page 25 of 27

3.2 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

Self Chain Security Audit

Page 26 of 27

3.3 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

Twitter
https://twitter.com/Beosin_com

Email
service@beosin.com

https://www.beosin.com
https://t.me/beosin
https://twitter.com/Beosin_com

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview

	2 Findings
	[Self Chain-01] Periodic vesting accounts lack val
	[Self Chain-02] Excessive broadcast failures can r
	[Self Chain-03] Migration request status processin
	[Self Chain-04] Improper concurrency operations ma
	[Self Chain-05] DeadWallet contract missing check 
	[Self Chain-06] Potential slashing evasion during 
	[Self Chain-07] The lockedAmount missing numeric c
	[Self Chain-08] Transaction failed due to wrong to
	[Self Chain-09] Missing BlockedAddressed validatio
	[Self Chain-10] The target address in the DeadWall
	[Self Chain-11] Redundant code
	[Self Chain-12] Query function is missing paramete

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Disclaimer
	3.3 About Beosin


